

1.	Introduction, history of steel structures, the applications and some representative structures, production of steel
2.	Steel products, material properties and testing, steel grades
3.	
4.	Safety of structures, limit state design, codes and specifications for the design
5.	Tension, compression, buckling
6.	Classification of cross sections, bending, shear, serviceability limit stat
7.	Buckling of webs, lateral-torsional stability, torsion, combination of internal forces
8.	Fatigue
9.	Design of bolted and welded connections
10	Steel-concrete composite structures
11	. Fire and corrosion resistance, protection of steel structures, life cycle assessment

 Design methods Experience of the designer Permissible stress design (in USA allowable stress design) The designer ensures that the stresses developed in a structure due to service loads do not exceed the elastic limit. This limit is usually determined from maximum allowed stress (yield limit) divided by factors of safety (factor >1). Partial safety factors method (in USA load and resistance factor design) The designer has to use a set of safety factors, these increase the effect of loads (i.e. stresses) and decrease the resistance (i.e. yield limit). The structure is assumed to be safe when the "magnified" loads are amaller than the relevant "reduced" resistances. Semi-probabilistic method It is the principle of European codes for the design of structures Probabilistic design methods The designer has to deal with probability of the factors entering the calculation Not commonly used at the moment 			R
 Permissible stress design (in USA allowable stress design) The designer ensures that the stresses developed in a structure due to service loads do not exceed the elastic limit. This limit is usually determined from maximum allowed stress (yield limit) divided by factors of safety (factor >1). Partial safety factors method (in USA load and resistance factor design) The designer has to use a set of safety factors, these increase the effect of loads (i.e. stresses) and decrease the resistance (i.e. yield limit). The structure is assumed to be safe when the "magnified" loads are amaller than the relevant "reduced" resistances. Semi-probabilistic method It is the principle of European codes for the design of structures Probabilistic design methods The designer has to deal with probability of the factors entering the calculation]	Design methods	
 The designer ensures that the stresses developed in a structure due to service loads do not exceed the elastic limit. This limit is usually determined from maximum allowed stress (yield limit) divided by factors of safety (factor >1). → Partial safety factors method (in USA load and resistance factor design) The designer has to use a set of safety factors, these increase the effect of loads (i.e. stresses) and decrease the resistance (i.e. yield limit). The structure is assumed to be safe when the "magnified" loads are amaller than the relevant "reduced" resistances. Semi-probabilistic method It is the principle of European codes for the design of structures Probabilistic design methods The designer has to deal with probability of the factors entering the calculation 		 Experience of the designer 	
 do not exceed the elastic limit. This limit is usually determined from maximum allowed stress (yield limit) divided by factors of safety (factor >1). → Partial safety factors method (in USA load and resistance factor design) The designer has to use a set of safety factors, these increase the effect of loads (i.e. stresses) and decrease the resistance (i.e. yield limit). The structure is assumed to be safe when the "magnified" loads are amaller than the relevant "reduced" resistances. Semi-probabilistic method It is the principle of European codes for the design of structures Probabilistic design methods The designer has to deal with probability of the factors entering the calculation 		 Permissible stress design (in USA allowable stress design) 	
The designer has to use a set of safety factors, these increase the effect of loads (i.e. stresses) and decrease the resistance (i.e. yield limit). The structure is assumed to be safe when the "magnified" loads are amaller than the relevant "reduced" resistances. Semi-probabilistic method It is the principle of European codes for the design of structures Probabilistic design methods The designer has to deal with probability of the factors entering the calculation		do not exceed the elastic limit. This limit is usually determined from maximum	ls
 (i.e. stresses) and decrease the resistance (i.e. yield limit). The structure is assumed to be safe when the "magnified" loads are amaller than the relevant "reduced" resistances. Semi-probabilistic method It is the principle of European codes for the design of structures Probabilistic design methods The designer has to deal with probability of the factors entering the calculation 		Partial safety factors method (in USA load and resistance factor design)	
It is the principle of European codes for the design of structures Probabilistic design methods The designer has to deal with probability of the factors entering the calculation 		(i.e. stresses) and decrease the resistance (i.e. yield limit). The structure is assumed to be safe when the "magnified" loads are amaller than the relevant	
 Probabilistic design methods The designer has to deal with probability of the factors entering the calculation 		Semi-probabilistic method	
The designer has to deal with probability of the factors entering the calculation		It is the principle of European codes for the design of structures	
		Probabilistic design methods	
Not commonly used at the moment		The designer has to deal with probability of the factors entering the calculation	
		Not commonly used at the moment	

	"A
Resistance	
The resistance (of an element loaded	l in tension here) is evaluated from
$R_k = A f_y$	
A is the cross-sectional area	
f_y is the yield limit of steel	
The resistance can be evaluated expe	erimentally and set of values is obtained
	when both the yield limit and the area are element is not defective because may still
In addition, there might be effect of	non-accurate model for calculation of the
resistance	*%
The design value of the resistance is	obtained by
$R_d = \frac{A f_y}{\gamma_M} = \frac{R_k}{\gamma_M}$	P
$\gamma_M \gamma_M$	R Resistance
	$R_d = R_k/\gamma_M$

		AL.
Li	mit states	
A	limit state is a condition of a structure beyond which it no longer fulfills	
	e relevant design criteria.	
U	Itimate Limit States	
	$A > 1, \gamma_F > 1$	
· A	Strength	
	• Fatigue strength	
	Brittle fracture	
	Stability of position	
S	erviceability limit states	
γ_{Λ}	$A_{f} = 1, \gamma_{F} = 1$	
	Deflections	
	Vibrations	
	Esthetics	

Source • Gravity action (self weight) • Climatic (snow, wind, rain, rime, temperature elongation) • Variable (load of ceiling in buildings) Determination • Precisely defined (e.g. bridge loading) • Very indeterminate (e.g. wind) Position • Fixed (e.g. dead load) • Movable (e.g. overhead crane, train/car on a bridge) Acting • At everyday service • At the particular situation • At disasters (fire, explosion) Acceleration • Static load		
Source Gravity action (self weight) Climatic (snow, wind, rain, rime, temperature elongation) Variable (load of ceiling in buildings) Determination Precisely defined (e.g. bridge loading) Very indeterminate (e.g. wind) Position Fixed (e.g. dead load) Movable (e.g. overhead crane, train/car on a bridge) Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration	Classification of actions (loading)	
 Gravity action (self weight) Climatic (snow, wind, rain, rime, temperature elongation) Variable (load of ceiling in buildings) Determination Precisely defined (e.g. bridge loading) Very indeterminate (e.g. wind) Position Fixed (e.g. dead load) Movable (e.g. overhead crane, train/car on a bridge) Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 		
 Climatic (snow, wind, rain, rime, temperature elongation) Variable (load of ceiling in buildings) Determination Precisely defined (e.g. bridge loading) Very indeterminate (e.g. wind) Position Fixed (e.g. dead load) Movable (e.g. overhead crane, train/car on a bridge) Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 	Source	
 Variable (load of ceiling in buildings) Determination Precisely defined (e.g. bridge loading) Very indeterminate (e.g. wind) Position Fixed (e.g. dead load) Movable (e.g. overhead crane, train/car on a bridge) Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 	 Gravity action (self weight) 	
Determination Precisely defined (e.g. bridge loading) Very indeterminate (e.g. wind) Position Fixed (e.g. dead load) Movable (e.g. overhead crane, train/car on a bridge) Acting Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration	 Climatic (snow, wind, rain, rime, temperature elongation) 	
 Precisely defined (e.g. bridge loading) Very indeterminate (e.g. wind) Position Fixed (e.g. dead load) Movable (e.g. overhead crane, train/car on a bridge) Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 	 Variable (load of ceiling in buildings) 	
 Very indeterminate (e.g. wind) Position Fixed (e.g. dead load) Movable (e.g. overhead crane, train/car on a bridge) Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 	Determination	
Position • Fixed (e.g. dead load) • Movable (e.g. overhead crane, train/car on a bridge) Acting • At everyday service • At everyday service • At the particular situation • At natural catastrophes (earthquake) • At disasters (fire, explosion) Acceleration	 Precisely defined (e.g. bridge loading) 	
 Fixed (e.g. dead load) Movable (e.g. overhead crane, train/car on a bridge) Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 	Very indeterminate (e.g. wind)	
 Movable (e.g. overhead crane, train/car on a bridge) Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 		
Acting Acting At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration	Fixed (e.g. dead load)	
 At everyday service At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 	 Movable (e.g. overhead crane, train/car on a bridge) 	
 At the particular situation At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 	Acting	
 At natural catastrophes (earthquake) At disasters (fire, explosion) Acceleration 		
At disasters (fire, explosion) Acceleration	-	
Acceleration		
Static load		
 Dynamic load (acceleration can not be omitted) 		

tur	opean codes
• Th	ese are usually product codes
De	sign codes (Eurocodes) exist for design of structures
	 European codes started to be developed in about 1980 to have common method of design in Europe (to increase foreign trade, etc.)
	 European Committee for Standardization (CEN) was established in 1990
	 at the moment, the members are 19 European countries
	 the others are "associated members" Czech Republic is a regular member since 1998
Pro	eliminary codes (ENV) were developed first
	they were considered as "temporary" standards to evaluate the principles
	 national standards could be used at the same time
	 National Application Document (NAD) – was included to take into account specific approach and "national" values for partial safety factors, this was prepared by national specialists
	are not valid any more
	ropean codes (EN)
	these replaced the ENV and national codes
	are the only standards used for design in Czech Republic
	NA - National Annex, include national values of partial safety factors, etc.

			esign		
	U				
	U			oncrete stru	ctures
	U	+		oncreae sura	ctures
	U				
	U	5			
Eurocode 8 -	Design of s	structures f	or earthqu	ake resistan	ce
Eurocode 9 -	Design of a	aluminium	structures		
ndards usually	y consist of	more parts	s, i.e. EN 1	993 consist	s of 12 part
2 5 7 3)	Eurocode 1 - Eurocode 2 - Eurocode 3 - Eurocode 4 - Eurocode 5 - Eurocode 6 - Eurocode 7 - Eurocode 8 - Eurocode 9 -	Eurocode 1 - Actions on Eurocode 2 - Design of 6 Eurocode 3 - Design of 6 Eurocode 4 - Design of 6 Eurocode 5 - Design of 6 Eurocode 6 - Design of 6 Eurocode 7 - Geotechnic Eurocode 8 - Design of 8 Eurocode 9 - Design of 8	Eurocode 1 - Actions on structures Eurocode 2 - Design of concrete str Eurocode 3 - Design of steel structu Eurocode 4 - Design of composite s Eurocode 5 - Design of timber structu Eurocode 6 - Design of masonry structures Eurocode 7 - Geotechnical design Eurocode 8 - Design of structures for Eurocode 9 - Design of aluminium	Eurocode 2 - Design of concrete structures Eurocode 3 - Design of steel structures Eurocode 4 - Design of composite steel and c Eurocode 5 - Design of timber structures Eurocode 6 - Design of masonry structures Eurocode 7 - Geotechnical design Eurocode 8 - Design of structures for earthqua Eurocode 9 - Design of aluminium structures	Eurocode 1 - Actions on structures Eurocode 2 - Design of concrete structures Eurocode 3 - Design of steel structures Eurocode 4 - Design of composite steel and concrete struct Eurocode 5 - Design of timber structures Eurocode 6 - Design of masonry structures Eurocode 7 - Geotechnical design Eurocode 8 - Design of structures for earthquake resistance

EN 1990	Effect	Service load (SLS)	Design load (ULS)
Dead	favourable	$\gamma_G = 1,0$	$\gamma_{G,min} = 1,0$
	unfavourable	$\gamma_G = 1,0$	$\gamma_{G,max} = 1,35$
Variable		$\gamma_0 = 1,0$	$\gamma_{O} = 1,50$
EN 1993 $M_{M} = 1,00$ (for	steel) sist for connections.	etc	

